Semi-classical Laguerre polynomials and a third-order discrete integrable equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2009 J. Phys. A: Math. Theor. 42454019
(http://iopscience.iop.org/1751-8121/42/45/454019)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.156
The article was downloaded on 03/06/2010 at 08:21

Please note that terms and conditions apply.

Semi-classical Laguerre polynomials and a third-order discrete integrable equation

Paul E Spicer ${ }^{1}$ and Frank W Nijhoff ${ }^{2}$
${ }^{1}$ Katholieke Universiteit Leuven, Departement Wiskunde, Celestijnenlaan 200B B-3001 Leuven, Belgium
${ }^{2}$ Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK
E-mail: Paul.Spicer@wis.kuleuven.be and frank.nijhoff@gmail.com

Received 19 March 2009, in final form 13 July 2009
Published 27 October 2009
Online at stacks.iop.org/JPhysA/42/454019

Abstract

A semi-discrete Lax pair formed from the differential system and recurrence relation for semi-classical orthogonal polynomials leads to a discrete integrable equation for a specific semi-classical orthogonal polynomial weight. The main example we use is a semi-classical Laguerre weight to derive a third-order difference equation with a corresponding Lax pair.

PACS numbers: $02.30 . \mathrm{Gp}, 02.30 . \mathrm{Ik}$

1. Introduction

The connection between semi-classical orthogonal polynomials and discrete integrable systems is well established. The earliest example of a discrete integrable system in semiclassical orthogonal polynomials can be attributed first to Shohat in 1939 [16], then second by Freud [10] in 1976. However, it was not until the 1990s, when the focus within integrable systems shifted from continuous to discrete, that Fokas et al [6] gave this equation a name, discrete Painlevé I, (d-P ${ }_{\mathrm{I}}$).

Since then, other examples of discrete Painlevé equations have been found through exploring the recursive structures of different semi-classical orthogonal polynomial families, including semi-classical Hermite [15], semi-classical Laguerre [9] and semi-classical Charlier [17].

We define an orthogonal polynomial sequence $\left\{P_{n}(z)\right\}_{n=0}^{\infty}$ with respect to a weight function $w(z)$ on an interval (a, b) as

$$
\begin{equation*}
\int_{a}^{b} P_{n}(z) P_{m}(z) w(z) \mathrm{d} z=h_{n} \delta_{n m} \tag{1.1}
\end{equation*}
$$

with the corresponding recurrence relation,

$$
\begin{equation*}
z P_{n}(z)=P_{n+1}+S_{n} P_{n}+R_{n} P_{n-1}, \tag{1.2}
\end{equation*}
$$

for a monic orthogonal polynomial family $P_{n}(z)=z^{n}+p_{n n-1} z^{n-1}+p_{n n-2} z^{n-2}+\cdots$. From Bochner [2] we know that if $\left\{P_{n}(z)\right\}$ is a sequence of classical orthogonal polynomials, then $P_{n}(x)$ is a solution of the second-order differential equation:

$$
\begin{equation*}
\phi(z) \frac{\mathrm{d}^{2} y}{\mathrm{~d} z^{2}}+\psi(z) \frac{\mathrm{d} y}{\mathrm{~d} z}=\lambda_{n} y \tag{1.3}
\end{equation*}
$$

where $\phi(z)$ and $\psi(z)$ are fixed polynomials of degrees $\leqslant 2$ and $\leqslant 1$, respectively, and λ_{n} is a real number depending on the degree of the polynomial solution. As a consequence of this, the weights of classical orthogonal polynomials satisfy a first-order differential equation called the Pearson differential equation:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} z}(\phi(z) w(z))=\psi(z) w(z) \tag{1.4}
\end{equation*}
$$

when the degrees of ϕ and ψ satisfy $\operatorname{deg} \phi \leqslant 2$ and $\operatorname{deg} \psi=1$. However, when the $\operatorname{deg} \phi>2$ and/or $\operatorname{deg} \psi>1$, then the weight function produces a class of semi-classical orthogonal polynomials.

Our approach to semi-classical orthogonal polynomials is to make use of the Laguerre method [11] (not to be confused with Laguerre orthogonal polynomials), which derives a pair of first-order differential equations for a general class of orthogonal polynomials, after the reduction of continued fractions. The connection with semi-classical orthogonal polynomials occurs because we associate the system with a semi-classical weight function $w(x)$ of the polynomials with the Pearson equation (1.4). For convenience, we choose to write the Pearson equation in the following form:

$$
\begin{equation*}
W(z) \partial_{z} w(z)=V(z) w(z) \tag{1.5}
\end{equation*}
$$

where $V(z)=\psi-\phi^{\prime}$ and $W(z)=\phi$. While our aim and approach are different, the Laguerre method has been used to find connections with integrable systems, including continuous Painlevé equations, recently. Magnus [14] found a continuous Painlevé equation of the sixth kind from the recurrence coefficients of a semi-classical Jacobi polynomial, and Forrester and Witte [7, 8] found a Painlevé equation of the fifth kind, also using the Laguerre method, but one that has been extended to include bi-orthogonal polynomials.

Our work will consider a semi-classical Laguerre weight, similar to that used by [9]. The semi-classical Laguerre polynomials have not been as widely explored as the semi-classical Hermite polynomials, nor are they as complex as the semi-classical Jacobi polynomials. Thus, Laguerre polynomials are an appropriate choice for finding new discrete integrable systems.

In section 2, we use the so-called Laguerre method to derive the differential system for semi-classical (monic) orthogonal polynomials. We show how the compatibility between the differential system and the recurrence relation (1.2) leads to a semi-discrete Lax equation [13], from which discrete integrable systems can be derived for specific semi-classical orthogonal polynomial weights. In section 3, we choose the semi-classical Laguerre weight, $l_{0}(x)=(x-t)^{\alpha} \mathrm{e}^{-\left(a x+\frac{b}{2} x^{2}\right)}$, which leads to a coupled difference system and a corresponding third-order nonlinear difference equation.

2. The Laguerre method

We introduce a moment generating function, the Stieltjes function,

$$
\begin{equation*}
f(z)=\int \frac{w(x)}{z-x} \mathrm{~d}(x) \tag{2.1}
\end{equation*}
$$

(Stieltjes transform of the orthogonality measure $w(x)$), then equations for P_{n} can be summarized as

$$
\begin{equation*}
f(z) P_{n}(z)=P_{n-1}^{(1)}(z)+\epsilon_{n}(z), \tag{2.2}
\end{equation*}
$$

where $P_{n-1}^{(1)}(z)$ is an associated polynomial to $P_{n}(z)$, with degree $n-1$. Although $\epsilon_{n}(z)$ is not a polynomial, we can define it as

$$
\begin{equation*}
\epsilon_{n}(z)=\int \frac{P_{n}(x)}{z-x} w(x) \mathrm{d} x \tag{2.3}
\end{equation*}
$$

The polynomials $P_{n-1}^{(1)}(z)$, as well as the $\epsilon_{n}(z)$, satisfy the same recurrence relations (1.2), but with $P_{-1}^{(1)}(z)=0$. Additionally, we have the following relations between $P_{n}, P_{n}^{(1)}$ and ϵ_{n} :

$$
\begin{align*}
& P_{n} P_{n-2}^{(1)}-P_{n-1} P_{n-1}^{(1)}=-h_{n-1}, \tag{2.4a}\\
& P_{n-1} \epsilon_{n}-P_{n} \epsilon_{n-1}=-h_{n-1} \tag{2.4b}
\end{align*}
$$

which can be found using the Christoffel-Darboux identity. Since both $P_{n}(z)$ and $\epsilon_{n}(z)$ satisfy the recurrence relation (1.2) we can give an explicit form of $P_{n}(z)$ and $\epsilon_{n}(z)$ defined in terms of the recurrence relation's coefficients:
$P_{n}(z)=z^{n}-\left(\sum_{j=0}^{n-1} S_{j}\right) z^{n-1}+\sum_{j=1}^{n-1}\left(\sum_{k=0}^{j-1} S_{j} S_{k}-R_{j}\right) z^{n-2}+\cdots$,
$\epsilon_{n}(z)=h_{n}\left(\frac{1}{z^{n+1}}+\left(\sum_{j=0}^{n} S_{j}\right) \frac{1}{z^{n+2}}+\sum_{j=0}^{n}\left(R_{j+1}+\sum_{i=0}^{j} S_{j} S_{i}\right) \frac{1}{z^{n+3}}+\cdots\right)$.

Semi-classical orthogonal polynomials may be defined through a differential difference equation of the form

$$
\begin{equation*}
W(z) \partial_{z} f(z)=V(z) f(z)+U(z) \tag{2.6}
\end{equation*}
$$

which comes from considering $W(z)\left(\partial_{z} f(z)\right)$ and the Pearson equation (1.5):

$$
\begin{aligned}
W(z)\left(\partial_{z} f(z)\right) & =-\int \frac{W(z) w(x)}{(z-x)^{2}} \mathrm{~d} x=-\int \frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{1}{z-x} W(z) w(x)\right) \mathrm{d} x+\int \frac{W(z)}{z-x} \partial_{x} w(x) \\
& =\int \frac{W(z)}{W(x)} V(x) \frac{1}{z-x} w(x) \mathrm{d} x \\
& =V(z) f(z)+W(z) \int\left(\frac{V(x)}{W(x)}-\frac{V(z)}{W(z)}\right) \frac{w(x)}{z-x} \mathrm{~d} x .
\end{aligned}
$$

On the first line we assume the first term reduces to zero because of parameter constraints and then we have that

$$
U(z)=W(z) \int\left(\frac{V(x)}{W(x)}-\frac{V(z)}{W(z)}\right) \frac{w(x)}{z-x} \mathrm{~d} x
$$

where $U(z)$ is a polynomial in z.

2.1. The fundamental linear system for semi-classical orthogonal polynomials

We start with equation (2.2), differentiate it and multiply by W, so that we can then make use of the first-order linear differential equation (2.6) (with the exception, that for this case we will consider the x variable to be dominant):

$$
\begin{align*}
& W f \partial_{x} P_{n}+(V f+U) P_{n}=W\left(\partial_{x} P_{n-1}^{(1)}+\partial_{x} \epsilon_{n}\right), \\
& W \partial_{x} P_{n}\left(P_{n-1}^{(1)}+\epsilon_{n}\right)+V P_{n}\left(P_{n-1}^{(1)}+\epsilon_{n}\right)+U P_{n}^{2}=W\left(\partial_{x} P_{n-1}^{(1)}+\partial_{x} \epsilon_{n}\right) P_{n} \tag{2.7}
\end{align*}
$$

We then go about separating the polynomial expression $P_{n-1}^{(1)}$ and ϵ_{n} so we get the following two equivalent expressions, which we denote Θ_{n} :

$$
\begin{align*}
\Theta_{n} & =W\left(\partial_{x} P_{n-1}^{(1)} P_{n}-\partial_{x} P_{n} P_{n-1}^{(1)}\right)-U P_{n}^{2}-V P_{n} P_{n-1}^{(1)} \tag{2.8a}\\
& =W\left(\partial_{x} P_{n} \epsilon_{n}-\partial_{x} \epsilon_{n} P_{n}\right)+V P_{n} \epsilon_{n}, \tag{2.8b}
\end{align*}
$$

where Θ_{n} is a polynomial bounded by a constant. We try the same method again except this time we use $f P_{n-1}$, which is again differentiated and multiplied by W :

$$
\begin{align*}
& \partial_{x} f P_{n-1}+f \partial_{x} P_{n-1}=\partial_{x} P_{n-2}^{(1)}+\partial_{x} \epsilon_{n-1}, \tag{2.9}\\
& V P_{n-1}\left(P_{n-1}^{(1)}+\epsilon_{n}\right)+U P_{n} P_{n-1}+W \partial_{x} P_{n-1}\left(P_{n-1}^{(1)}+\epsilon_{n}\right)=W\left(\partial_{x} P_{n-2}^{(1)}+\partial_{x} \epsilon_{n-1}\right) P_{n} \tag{2.10}
\end{align*}
$$

Again we separate the polynomial expression $P_{n-1}^{(1)}$ and ϵ_{n} to get a second object, which will be called Ω_{n} :

$$
\begin{align*}
\Omega_{n} & =W\left(P_{n} \partial_{x} P_{n-2}^{(1)}-P_{n-1}^{(1)} \partial_{x} P_{n-1}\right)-V P_{n-1} P_{n-1}^{(1)}-U P_{n} P_{n-1} \tag{2.11a}\\
& =W\left(\epsilon_{n} \partial_{x} P_{n-1}-P_{n} \partial_{x} \epsilon_{n-1}\right)+V \epsilon_{n} P_{n-1} . \tag{2.11b}
\end{align*}
$$

We can express both Ω_{n} and Θ_{n} in terms of the recurrence coefficients by substituting the expressions for $P_{n}(2.5 a)$ and $\epsilon_{n}(2.5 b)$ into $\Omega_{n}(2.11 b)$ and $\Theta_{n}(2.8 b)$:

$$
\begin{align*}
\Theta_{n}= & W(x) h_{n}\left\{\left[\frac{1}{x^{n+1}}+\left(\sum_{j=0}^{n} S_{j}\right) \frac{1}{x^{n+2}}+\cdots\right] \times\left[n x^{n-1}-\left(\sum_{j=0}^{n-1} S_{j}\right)(n-1) x^{n-2}+\cdots\right]\right. \\
& \left.+\left[\frac{n+1}{x^{n+2}}+\left(\sum_{j=0}^{n} S_{j}\right) \frac{n+2}{x^{n+3}}+\cdots\right] \times\left[x^{n}-\left(\sum_{j=0}^{n-1} S_{j}\right) x^{n-1}+\cdots\right]\right\} \\
& +V(x) \times h_{n}\left[\frac{1}{x^{n+1}}+\left(\sum_{j=0}^{n} S_{j}\right) \frac{1}{x^{n+2}}+\cdots\right] \times\left[x^{n}-\left(\sum_{j=0}^{n-1} S_{j}\right) x^{n-1}+\cdots\right] \tag{2.12a}
\end{align*}
$$

$$
\begin{aligned}
\Omega_{n}= & W(x)\left\{h_{n}\left[\frac{1}{x^{n+1}}+\left(\sum_{j=0}^{n} S_{j}\right) \frac{1}{x^{n+2}}+\sum_{j=0}^{n}\left(R_{j+1}+\sum_{k=0}^{j} S_{j} S_{k}\right) \frac{1}{x^{n+3}}+\cdots\right]\right. \\
& \times\left[(n-1) x^{n-2}-(n-2)\left(\sum_{j=0}^{n-2} S_{j}\right) x^{n-3}+(n-3) \sum_{j=1}^{n-2}\left(\sum_{k=0}^{j-1} S_{j} S_{k}-R_{j}\right) x^{n-4}+\cdots\right]
\end{aligned}
$$

$$
\begin{align*}
& +h_{n-1}\left[x^{n}-\left(\sum_{j=0}^{n-1} S_{j}\right) x^{n-1}+\sum_{j=1}^{n-1}\left(\sum_{k=0}^{j-1} S_{j} S_{k}-R_{j}\right) x^{n-2}+\cdots\right] \\
& \left.\times\left[\frac{n}{x^{n+1}}+\left(\sum_{j=0}^{n-1} S_{j}\right) \frac{(n+1)}{x^{n+2}}+\sum_{j=0}^{n-1}\left(R_{j+1}+\sum_{k=0}^{j} S_{j} S_{k}\right) \frac{(n+2)}{x^{n+3}}+\cdots\right]\right\} \\
& +V(x) h_{n}\left[\frac{1}{x^{n+1}}+\left(\sum_{j=0}^{n} S_{j}\right) \frac{1}{x^{n+2}}+\sum_{j=0}^{n}\left(R_{j+1}+\sum_{k=0}^{j} S_{j} S_{k}\right) \frac{1}{x^{n+3}}+\cdots\right] \\
& \times\left[x^{n-1}-\left(\sum_{j=0}^{n-2} S_{j}\right) x^{n-2}+\sum_{j=1}^{n-2}\left(\sum_{k=0}^{j-1} S_{j} S_{k}-R_{j}\right) x^{n-3}+\cdots\right] . \tag{2.12b}
\end{align*}
$$

These definitions will be particularly useful when we are looking at examples of specific semi-classical weights.

Since the recurrence relation (1.2) can be expressed in a matrix form
$\psi_{n+1}(x)=\left(\begin{array}{cc}x-S_{n} & -R_{n} \\ 1 & 0\end{array}\right) \psi_{n}(x), \quad$ where $\quad \psi_{n}(x)=\binom{P_{n}(x)}{P_{n-1}(x)}$,
we collect the important relations we have derived so far and put them in a matrix form so that our intended differential system can be written as one expression. We begin with the two expressions (2.8a) and (2.11a), written in the matrix form:
$\left(\begin{array}{cc}P_{n-1} & -P_{n-2}^{(1)} \\ P_{n} & -P_{n-1}^{(1)}\end{array}\right)\binom{W \partial_{x} P_{n-1}^{(1)}}{W \partial_{x} P_{n}}=\binom{\Omega_{n}+V P_{n-1} P_{n-1}^{(1)}+U P_{n} P_{n-1}}{\Theta_{n}+V P_{n} P_{n-1}^{(1)}+U P_{n}^{2}}$,
which can easily be solved making use of (2.4a) to give
$\binom{W \partial_{x} P_{n-1}^{(1)}}{W \partial_{x} P_{n}}=\frac{1}{h_{n-1}}\left(\begin{array}{cc}P_{n-1}^{(1)} & -P_{n-2}^{(1)} \\ P_{n} & -P_{n-1}\end{array}\right)\binom{\Omega_{n}+V P_{n-1} P_{n-1}^{(1)}+U P_{n} P_{n-1}}{\Theta_{n}+V P_{n} P_{n-1}^{(1)}+U P_{n}^{2}}$,
so that we have two differential equations:

$$
\begin{align*}
& W \partial_{x} P_{n}=\frac{1}{h_{n-1}}\left(\Omega_{n} P_{n}-\Theta_{n} P_{n-1}\right), \tag{2.15a}\\
& W \partial_{x} P_{n-1}^{(1)}=\left(\Omega_{n} P_{n-1}^{(1)}-\Theta_{n} P_{n-2}^{(1)}+V h_{n-1} P_{n-1}^{(1)}+U h_{n-1} P_{n}\right) . \tag{2.15b}
\end{align*}
$$

Looking for a second differential relation for P_{n}, we take (2.15a) with a reduced index in conjunction with the recurrence relation (1.2), which leads to

$$
\begin{equation*}
W\left(\partial_{x} P_{n-1}\right)=\frac{1}{h_{n-2}}\left(\Omega_{n-1} P_{n-1}-\frac{\Theta_{n-1}}{R_{n-1}}\left(\left(x-S_{n-1}\right) P_{n-1}-P_{n}\right)\right) . \tag{2.16}
\end{equation*}
$$

However, we have no expression to remove x from the equation, so we consider the problematic part of the expression: $\left(x-S_{n}\right) \Theta_{n}=\left(x-S_{n}\right)\left(W\left(\epsilon_{n} \partial_{x}\left(P_{n}\right)-\partial_{x}\left(\epsilon_{n}\right) P_{n}\right)+V \epsilon_{n} P_{n}\right)$, which we expand using (1.2) and the differential of (2.4b) to get

$$
\begin{align*}
\left(x-S_{n}\right) \Theta_{n} & =W\left(-\partial_{x} \epsilon_{n}\left(P_{n+1}+R_{n} P_{n-1}\right)+\partial_{x} P_{n}\left(\epsilon_{n+1}+R_{n} \epsilon_{n-1}\right)\right)+V P_{n}\left(\epsilon_{n+1}+R_{n} \epsilon_{n-1}\right) \\
& =\Omega_{n+1}+R_{n} \Omega_{n}+V h_{n} . \tag{2.17}
\end{align*}
$$

This allows us to remove x from (2.16) to give a second differential equation:

$$
\begin{equation*}
W \partial_{x} P_{n-1}=\frac{1}{h_{n-1}}\left(\Theta_{n-1} P_{n}-\Omega_{n} P_{n-1}\right)-V P_{n-1} \tag{2.18}
\end{equation*}
$$

We now have a differential system,

$$
W \partial_{x} \psi(x)=\frac{1}{h_{n-1}}\left(\begin{array}{cc}
\Omega_{n}(x) & -\Theta_{n}(x) \tag{2.19}\\
\Theta_{n-1}(x) & -\left(\Omega_{n}(x)+V(x) h_{n-1}\right)
\end{array}\right) \psi(x)
$$

where $\psi(x)=\left(\begin{array}{l}P_{P_{n}(x)}(x)\end{array}\right)$. Thus if we give the recurrence and differential equations in a semi-discrete Lax representation, we have

$$
\begin{align*}
& \psi_{n+1}(x)=L_{n}(x) \psi_{n}(x), \tag{2.20a}\\
& \partial_{x} \psi_{n}(x)=M_{n}(x) \psi_{n}(x), \tag{2.20b}
\end{align*}
$$

where
$L_{n}=\left(\begin{array}{cc}x-S_{n} & -R_{n} \\ 1 & 0\end{array}\right), \quad M_{n}=\frac{1}{W h_{n-1}}\left(\begin{array}{cc}\Omega_{n}(x) & -\Theta_{n}(x) \\ \Theta_{n-1}(x) & -\left(\Omega_{n}(x)+V(x) h_{n-1}\right)\end{array}\right)$.
Here we have identified the Lax matrices L_{n} and M_{n}. So given a particular semi-classical weight we can identify the polynomials V and W, which, in turn, lead to expressions for Θ and Ω.

2.2. Compatibility relations

We now use the differential system (2.19) with the matrix form of the recurrence relation (2.13) in order to create a compatibility relation so that relations between Ω_{n} and Θ_{n} can be derived. Thus we consider the compatibility between the semi-discrete Lax pairs, which leads to the semi-discrete Lax equation:

$$
\begin{equation*}
\partial_{x} L_{n}=M_{n+1} L_{n}-L_{n} M_{n} \tag{2.21}
\end{equation*}
$$

Equating this expression

$$
\begin{align*}
&\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=\frac{1}{W h_{n}}\left(\begin{array}{cc}
\Omega_{n+1}(x) & -\Theta_{n+1}(x) \\
\Theta_{n}(x) & -\left(\Omega_{n+1}(x)+V(x) h_{n}\right)
\end{array}\right)\left(\begin{array}{cc}
x-S_{n} & -R_{n} \\
1 & 0
\end{array}\right) \\
&-\frac{1}{W h_{n-1}}\left(\begin{array}{cc}
x-S_{n} & -R_{n} \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
\Omega_{n}(x) & -\Theta_{n}(x) \\
\Theta_{n-1}(x) & -\left(\Omega_{n}(x)+V(x) h_{n-1}\right)
\end{array}\right), \tag{2.22}
\end{align*}
$$

we can identify two distinct relations

$$
\begin{align*}
& \left(x-S_{n}\right)\left(\frac{\Omega_{n+1}}{h_{n}}-\frac{\Omega_{n}}{h_{n-1}}\right)=R_{n+1} \frac{\Theta_{n+1}}{h_{n+1}}-R_{n} \frac{\Theta_{n-1}}{h_{n-1}}+W \tag{2.23a}\\
& \left(x-S_{n}\right) \frac{\Theta_{n}}{h_{n}}=\frac{\Omega_{n+1}}{h_{n}}+\frac{\Omega_{n}}{h_{n-1}}+V \tag{2.23b}
\end{align*}
$$

which we can identify as being comparable with the Laguerre-Freud equations [1].
Remark 2.1. We should point out that this system could be explored independent of orthogonal polynomials by simply setting $V=v_{0}+v_{1} x+v_{2} x^{2}+\cdots+v_{n} x^{n}$ and $W=w_{0}+w_{1} x+w_{2} x^{2}+\cdots+w_{n} x^{n}$ (where the v_{j}, w_{j} are constants) and then see what difference equations are produced for different orders of V and W. However, since we are interested with the connections with semi-classical orthogonal polynomials, we will present a semi-classical weight and then determine V and W.

3. A coupled difference equation and corresponding third-order nonlinear equation

This method can be demonstrated by using a semi-classical weight $l_{0}(x)=(x-t)^{\alpha} \mathrm{e}^{-\left(a x+\frac{b}{2} x^{2}\right)}$ with $\alpha, a, b>0$, which is synonymous with the (associated) Laguerre orthogonal polynomials $l(x)=x^{\alpha} \mathrm{e}^{-x}$. Our choice of deformations for this weight, involve altering the order of the polynomial in the exponential. Then from the Pearson equation, we have

$$
\begin{equation*}
V(x)=\alpha-(a+b x)(x-t), \quad W(x)=x-t, \tag{3.1}
\end{equation*}
$$

and from the consistency relations we have two non-trivial equations

$$
\begin{align*}
& b\left(R_{n+1}+R_{n}\right)=-S_{n}\left[b S_{n}+(a-b t)\right]+(2 n+1+a t+\alpha) \tag{3.2a}\\
& R_{n+1}\left[b\left(S_{n+1}+S_{n}\right)+(a-b t)\right]-R_{n}\left[b\left(S_{n}+S_{n-1}\right)+(a-b t)\right]=S_{n}-t \tag{3.2b}
\end{align*}
$$

We consider this to be a nonlinear system in terms of the recurrence coefficients R_{n} and S_{n}, which has the linear system (2.20) with the Lax pair:
$L_{n}=\left(\begin{array}{cc}x-S_{n} & -R_{n} \\ 1 & 0\end{array}\right)$,
$M_{n}=\frac{1}{x-t}\left(\begin{array}{cc}n-b R_{n} & \left(b x+a+b\left(S_{n}-t\right)\right) R_{n} \\ -\left(b x+a+b\left(S_{n-1}-t\right)\right) & b x^{2}+x(a-b t)+b R_{n}-n-\alpha-a t\end{array}\right)$,
for the associated semi-discrete Lax equation (2.21). This system can be called a discrete integrable system due to the existence of the corresponding linear problem, i.e., the Lax pair. In the strictest sense we cannot call the equation Painlevé since it is third order; however, there are other examples of third-order nonlinear difference equations that are known to be integrable [4].

Writing this system in the matrix form,

$$
\begin{gather*}
\left(\begin{array}{cc}
b & b \\
b\left(S_{n+1}+S_{n}\right)+(a-b t) & -\left[b\left(S_{n}+S_{n-1}\right)+(a-b t)\right]
\end{array}\right)\binom{R_{n+1}}{R_{n}} \\
=\binom{-S_{n}\left(b S_{n}+(a-b t)\right)+(2 n+1+a t+\alpha)}{S_{n}-t} \tag{3.4}
\end{gather*}
$$

allows us to solve the system in terms of R_{n+1} and R_{n}, and hence we can find a third-order difference equation in S_{n} :

$$
\begin{align*}
&\left\{\left(S_{n}+S_{n-1}+\left(\frac{a}{b}-t\right)\right)\left(S_{n}\left(S_{n}+\left(\frac{a}{b}-t\right)\right)\right)-\frac{1}{b}(2 n+1+a t+\alpha)\left(\left(S_{n}+S_{n-1}\right)\right.\right. \\
&\left.\left.\quad+\left(\frac{a}{b}-t\right)\right)-\left(S_{n}-t\right)\right\} \times\left\{-2\left(S_{n+1}+\frac{a}{b}-t\right)-\left(S_{n}+2 S_{n+1}+S_{n+2}\right)\right\} \\
&=\left\{\left(S_{n+2}+S_{n+1}+\left(\frac{a}{b}-t\right)\right)\left(S_{n+1}\left(S_{n+1}+\left(\frac{a}{b}-t\right)\right)\right)-\frac{1}{b}(2 n+1+a t+\alpha)\left(\left(S_{n+2}+S_{n+1}\right)\right.\right. \\
&\left.\left.\quad+\left(\frac{a}{b}-t\right)\right)-\left(S_{n+1}-t\right)\right\} \times\left\{-2\left(S_{n}+\frac{a}{b}-t\right)-\left(S_{n-1}+2 S_{n}+S_{n+1}\right)\right\} \tag{3.5}
\end{align*}
$$

Alternatively, by letting $S_{n}=Q_{n}-Q_{n-1}$ in (3.2), we are led to an alternative third-order difference equation in Q_{n} that includes an extra parameter c :

$$
\begin{align*}
& b\left(\frac{Q_{n}-(n+1) t+c}{a-b t+b\left(Q_{n+1}-Q_{n-1}\right)}+\frac{Q_{n-1}-n t+c}{a-b t+b\left(Q_{n}-Q_{n-2}\right)}\right) \\
& \quad=-\left(Q_{n}-Q_{n-1}\right)\left[b\left(Q_{n}-Q_{n-1}\right)+a-b t\right]+(2 n+1+a t+\alpha) \tag{3.6}
\end{align*}
$$

where c is the constant of integration.

4. Conclusion and outlook

Given a class of semi-classical orthogonal polynomials (Hermite, Laguerre and Jacobi), we can identify a semi-discrete Lax pair and thus an associated discrete integrable system. Using the Laguerre weight, $l_{0}(x)=(x-t)^{\alpha} \mathrm{e}^{-\left(a x+\frac{b}{2} x^{2}\right)}$, we found a new coupled discrete integrable system, which is first order in R and second order in S. Combining the two equations gives a third-order difference equation in S or a third-order difference equation in the new variable Q. Since we were only interested in the connections with discrete Painlevé equations, we have omitted to look at the additional t-differential equation (which appears as a consequence of the t parameter in the weight function). It is likely that we could use the t-differential equation to find a continuous Painlevé equation related to our semi-classical Laguerre weight.

While we have chosen to look at a simple deformation of the classical orthogonal polynomial weight associated Laguerre, this scheme can, of course, be used for deriving a multitude of discrete integrable systems, through choosing an appropriate classical weight function. While we have made some progress in this regard, finding the corresponding continuous equation is not always possible. Working with further examples has shown that when looking for continuum limits, the choice of a semi-classical weight function must be of a particular form.

In this paper, we have applied the Laguerre method to a family of classical orthogonal polynomials, but we expect it is possible that the Laguerre method can be used with other classes of orthogonal polynomials, such as the discrete, multiple or q-orthogonal polynomials. We would need to alter the method appropriately, such as choosing an analogue for the Pearson equation (since we are using the 'classical Pearson equation' for classical orthogonal polynomials). Thus, we could derive a similar scheme for q-orthogonal polynomials given the q-Pearson equation, where a natural extension of this would be to consider the q-Laguerre orthogonal polynomials.

Acknowledgments

Paul Spicer wishes to thank Nalini Joshi for numerous discussions on integrable lattice equations, and for advice and encouragement. He wishes to thank Pavlos Kassotakis for proof reading the paper and useful insights. The author is supported by the Australian Research Council Discovery Project grant \#DP0664624.

References

[1] Belmehdi S and Ronveaux A 1994 Laguerre-Freud's equations for the recurrence coefficients of semi-classical orthogonal polynomials J. Approx. Theory 76 351-68
[2] Bochner S 1929 Über Sturm-siouvillesche polynomsysteme Math. Z. 29 730-6
[3] Christoffel E B 1858 Über die gaussische quadratur und eine verallgemeinerung derselben J. Reine Angew. Math. 55 61-82
[4] Grammaticos B, Nijhoff F W and Ramani A 1999 Discrete Painlevé equations The Painlevé Property ed R Conte (New York: Springer) chapter 7
[5] Darboux G 1878 Mémoire sur l'approximation des fonctions de trés grands nombres J. Math. 45-56, 377-416
[6] Fokas A S, Its A R and Kitaev A V 1991 Discrete Painlevé equations and their appearance in quantum gravity Commun. Math. Phys. 142 313-44
[7] Forrester P J and Witte N S 2004 Bi-orthogonal polynomials on the unit circle, regular semi-classical weights and integrable systems arXiv:math.CA/0412394
[8] Forrester P J and Witte N S 2004 Discrete Painlevé equations for a class of $\mathrm{P}_{\mathrm{VI}} \tau$-functions given as $U(N)$ averages arXiv:math.PH/0412065
[9] Forrester P J and Witte N S 2007 The distribution of the first eigenvalue spacing at the hard edge of the Laguerre unitary ensemble Kyushu J. Math. 61 457-526
[10] Freud G 1976 On the coefficients in the recursion formulae of orthogonal polynomials Proc. R. Ir. Acad. A 76 1-6
[11] Laguerre E 1880 Sur la réduction en fractions continues d'une fonction qui satisfait à une équation linéaire du premier ordre à coefficients rationnels Bull. S.M.F. 8 21-7 (http://www.numdam.org/item?id=BSMF 18808 210)
[12] Laguerre E 1885 Sur la réduction en fractions continues d'une fraction qui satisfait à une équation différentielle linéaire du premier ordre dont les coefficients sont rationnels J. Math. Pure Appl. 1 135-65 Laguerre E 1972 Oeuvres (New York: Chelsea) pp 685-711
[13] Lax P D 1968 Integrals of nonlinear equations of evolution and solitary waves Commun. Math. Phys. 21 467-90
[14] Magnus A P 1995 Painlevé-type differential equations for the recurrence coefficients of semi-classical polynomials J. Comput. Appl. Math. 57 215-37 (arXiv:math.CA/9307218)
[15] Magnus A P 1999 Freud equations for orthogonal polynomials as discrete Painlevé equations Symmetries and Integrability of Difference Equations (Mathematical Society Lecture Note Series vol 255) ed P A Clarkson and F W Nijhoff (London: Cambridge University Press) pp 228-43
[16] Shohat J A 1939 A differential equation for orthogonal polynomials Duke Math. J. 5 401-17
[17] Assche W Van and Foupouagnigni M 2003 Analysis of non-linear recurrence relations for the recurrence coefficients of generalized Charlier polynomials J. Nonlinear Math. Phys. 10 (Suppl. 2) 231-7

